
A Muon Collider Detector 

‘A Perspective’

Marcel Demarteau

Fermilab

DoE Briefing 
Germantown, June 24, 2009



Outline
• Physics Goals 

– Underlying physics is fundamentally the same as for an e+e- collider 
– Premise is that μC comes online after the LHC has run its full course, 

including the upgrades of the LHC experiments 
– Need to improve on the measurements at the LHC; compare physics 

reach of various options available 
• Detector Design
• Detector Performance Requirements  
• Detector Environment
• Detector Technologies
• Observations 
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μC Physics 
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• For many processes the cross sections 
are essentially the same as for CLIC

• Processes through s-channel  
spin-1 exchange: σ ~ 1/s
– Cross sections relatively 

democratic
– Cross sections are small 
– Angular distribution: (1 + cos2θ) 

• Premium on forward region, 
which is troublesome at μC

• Hermetic detectors 
• Near perfect particle identification 

required 
– Distinguish quarks from antiquarks 
– Discriminate W and Z in hadronic 

decay mode
• W/Z discrimination leads to 

requirement on jet energy 
resolution of 3%
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Detector Concept
• Detector design is mainly driven by three criteria: 

– Physics goals 
• Choice of detector technology driven by 

scientific “prejudice”
– Machine Detector Interface

• Beam backgrounds 
• Beam delivery system, L*

• Machine parameters such as bunch crossing, 
duty cycle, … 

– Cost 

• Each criterion is (ideally) parametrized in a physics 
metric  
– Physics

• e.g.: Importance of palette of physics processes 
to be measured

– Machine Detector Interface
• e.g.: the importance of a luminosity/polarization 

measurement 
– Cost 

• e.g.: Resolution versus integrated luminosity 
(running time) 

Higgs self-coupling
e+e- -> ZHH
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Performance Parameters

• Vertexing driven by heavy flavor 
identification 
– Physics reach greatly enhanced

by ability to identify c from b,
and q from qbar 

• Solenoid driven by technology 
and cost 

• Tracking driven by measurement
of Higgs recoil mass

• Calorimetry driven by 
differentiation between W and Z
in the hadronic decay mode 
– Need a 3σ resolving power

for background rejection:
jet energy resolution of ~3% 



Technology versus Environment
• The overall performance of the detector is effectively governed by 

a) The intrinsic detector performance (choice of technology) and 
b) The environment in which it operates

• Environment 

• Technology
– Will give a few examples which will indicate that technology does not 

seem to be a bottleneck 
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Machine Parameters

• Observations: 
– Time stamping at CLIC at 0.5ns level; will have to integrate over full 

bunch train before readout; μC readout every bunch crossing, i.e. 
background can be factor 300 worse in μC to be comparable to CLIC 

– ILC / CLIC require power pulsing at 5 / 50HZ. 
Power requirements at a μC may be mitigated 
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Beam Induced Background
• Source of background for CLIC and ILC are similar
• However, due to the higher beam energy and small bunch sizes they are 

significantly more severe at CLIC.

• Coherent pairs (3.8×108 per bunch crossing) 
– About a million times more than at 500 GeV
– Disappear in beam pipe

• Incoherent pairs (3.0×105 per bunch crossing) 
– About 3x larger than at 500 GeV
– Suppressed by strong B-field

• γγ interactions → hadrons: ~ 2.7/bx
– 20×more than at 500 GeV

• Backscattered particles more energetic (neutrons)
– Muon background from upstream linac difficult to stop due to high CLIC 

energy 
• Synchrotron radiation
• Beam tails from the linac
• Backscattered particles from the spent beam (neutrons)
• Please note: at CLIC this occurs every 0.5 ns! 
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Decay Background

• Background estimate from 
decay muons, inside ± 1.2m 
central region,  2x2 TeV, for 
best IR configuration 
considered to date, with 
collimating spoilers and SC 
sweeping magnets 
– Mean decay electron 

of 700 GeV

• Near uniform distribution
across the detector 

Collider μ per bunch Decays/meter 
50 × 50 GeV 4 × 1012 2.6 × 107 

250 × 250 GeV 2 × 1012 2.6 × 106 
2 × 2 TeV 2 × 1012 3.2 × 105 

2.5 × 2.5 TeV LEMC 1.6 × 1011 2.0 × 104 

 from: S. Kahn

N. Mokhov

particles/cm2/X-ing
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Vertex Detector
• Inner radius set by avoiding beam 

background envelope 

• Incoherent pair production from 
μ+μ− → μ+μ−e+e− significant for 
high energy muon colliders.
– Estimated cross section of 

10 mb giving 3×104 electron 
pairs per bunch crossing.

– Nearly one order of magnitude 
less than CLIC 

• There is a limitation to the field 
strength 

500 GeV
20 mrad 
xing
B=5 T
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Vertex Detector
• Goal in terms of occupancies is 

0.01-0.1 hit/mm2 for the inner-
most layers

• Limitation is the pattern recognition

• Even if the occupancies can be 
kept in check, impact parameter
resolution degrades nearly linearly 
with radius of first layer; pixel size
has limitations due to charge 
sharing 

• Heavy flavor physics plays key role in physics 
menu; tagging b’s is not sufficient. 

• What is a realistic radius for the first layer
vertex detector and how does it affect the 
physics reach? 

)sin/(105 2/3 ϑσσ φ przr ⊕≈≈

)sin/(3515 2/3 ϑσσ φ przr ⊕≈≈

ILC

CLIC
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Vertex Detector Sensor Technology 
• Many technologies being explored for vertex detectors
• Even though no technology has been demonstrated 

to be a viable option for an e+e- environment, confident
that a technology will be available:
– Very leisure bunch crossing and 

repetition rate at μC

• Sensor Options 
– Column Parallel CCD
– ISIS sensors
– Monolithic Active Pixels
– SOI devices
– DepFet sensors
– 3D sensors 
– …

• The technology (will) exist
• Issue is how close in the 

detector can go 
DEPFET

LBL-LDRD3ISIS

CPC2

3D

3-D Pixel

pixel
Detector

ROIC

Processor



Silicon Pixel Tracker

125 cm

RAL
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Tracker
• Goal for momentum resolution: 

• Silicon Strip Tracker  
– Silicon strip tracker à la CMS/SiD
– Single bunch time stamping already 

achieved at current generation 
experiments 

– Same requirements for low mass 
– Barrel / Disk geometry may be very 

robust in background rejection 
parallel to beamline

• Silicon Pixel tracker at lower power 
– A pixel technology for an outer 

tracker may be well feasible for a 
lepton collider 

– Power requirements are stronly
mitigated at μC

5
2 1052 −⋅−=

T

T

p
pδ



TPC 
• ILC TPC requirements 

– δp/p ≤ 0.1%, B=4T
– Material <3% X0 near η = 0

<30%X0 endcap
– pads per endcap > 106

– pad size about 1x6 mm2

– hit resol. 100, 500 μm rφ, z @ 4T
– At the ILC ~103 beamstrahlung

photons per bunch crossing

• The ILD TPC has a drift length of ~ 2.5m and will 
integrate over 100-150 bunch crossings; this problem does
not exist for a μC

• At CLIC these problems are exacerbated (positive ion backflow) 

• Coverage down to 10-15 degrees, similar to μC
Resolution requirements are also similar to ILC/CLIC

• Silicon tracker may be extremely robust in μC environment 
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Particle Flow

Imaging 
calorimeter

• Major paradigm at ILC/CLIC is obtaining better energy resolution through 
Particle Flow Algorithms (PFA)
– PFA: Reconstruct momenta of individual particles in jet; avoid double 

counting
• Measure photons in the ECAL 
• Measure charged particles in the tracking system
• Subtract calorimeter energy associated with charged 

hadrons 
• Measure neutral hadrons in the HCAL (+ ECAL) 

• PFA: a brilliant idea ! 
• Novelty is in reducing the role of the hadron calorimeter – and thus the 

hadron energy resolution – to the measurement of neutral hadrons only

• Key is the proper association of hits in the calorimeter to the charged 
particle tracks

• Implications for the calorimetry
– Granularity, longitudinal and transverse !
– Sampling of the hadron calorimeter
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Particle Flow Viability
• Is PFA viable for multi-TeV collisions ? 
• Is PFA viable in the environment of a μC ?

• Pandora PFA Performance 
– At low energies 25%/√E obtained 
– At higher energies resolution 

degrades
• Performance of “conventional” good

calorimeter
– Resolution improves with increasing 

thickness of calorimeter at higher 
energies

• Deep calorimeter needed 8λ -> 10λ

• Note: at √s = 3 TeV average parton 
energy is 240 GeV (averaged over all 
SM processes) 

M. Thompson

ILD
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Particle Flow Viability
• Study within the ILD concept based on 

Pandora PFA: Confusion term increases 
nearly linearly with jet energy
– Cross-over intrinsic resolution and 

confusion at Ejet ~ 110 GeV

• Particle Flow calorimetry not à priori 
obvious for multi-TeV events but it may 
be possible to get adequate performance 
tuning HCAL depth, tracker outer radius, 
B field and by optimizing PFA

• In the background environment of a μC, 
the confusion may dominate. Gating of 
readout should be explored

• Event reconstruction, jet clustering and gluon radiation affect the physics 
reconstruction performances beyond particle flow response

• If the premise of required jet energy resolution holds for a μC detector, a lot 
of R&D needs to be done 



Dual Readout Calorimetry 
• Correct on a shower-by-shower basis using the correlation of the total 

observed ionization (S) and Cherenkov (Č) light

• Two options currently under consideration:
– Fiber readout 
– Total absorption crystal readout 

• Under consideration is the development of 
waveform digitizing electronics at multi-GHz 
to sample the full waveform 
– Provides timing information
– Enables gating out-of-time 

background hits 
– Allows for full ‘deconvolution’ of 

signal 

• Calorimetry for a μC is not a proven 
technology (neither is it for ILC/CLIC); 
R&D fully synergistic with ILC/CLIC and
for that matter, any new project 
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Corrected Response 
(GeV)

100 GeV pions 

Blue: uncorrected

Red: corrected



The “Cone”
• The forward region is an unresolved problem for all lepton colliders

• Initial studies at CLIC implement a Tungsten cone at about 130 mrad (7.50)
• This study was carried out for no crossing angle (crossing angle is 20 mrad)
• The impact on the forward region and the physics is unclear
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Machine Detector Interface
• An integral detector part, 

which affects the physics
program, is the MDI 

• Especially the reach for 
SUSY signals are strongly 
affected by forward 
instrumentation 

• At ILC/CLIC
– Lumi-Cal (40-140 mrad)

• Precise measurement of 
the integrated luminosity 
(ΔL/L ~ 10-3) using 
Bhabha’s

• Veto for 2-γ processes 
– Beam-Cal (5-40 mrad)

• Beam diagnostics using 
beamstrahlung pairs

• Provide 2-γ process veto
– Gam-Cal (< 5mrad)

• Beam diagnostics using 
beamstrahlung photons

Physics signal: e.g. 
SUSY smuon production

Background signal: 
2-photon event, may fake
the above signal if the 
electron is not detected.

IP Lumi-Cal

Beam/Gam-Cal

r=200-350 mm

r=110-165 mm



Detector Summary 
• In many respects the challenges for the detector technologies for a 

μC detector are more modest than for an ILC/CLIC detector 

• If a detector meets the technical requirements for the ILC/CLIC it 
will meet the requirements for the MC  

• The issue is not the technical requirements of the detector; it is the 
beam environment that determines the physics reach! 
– Is there polarization? How well is it measured? 
– What is a realistic luminosity?
– What is a realistic angular coverage? 
– What is a realistic inner vertex detector radius?
– What is a realistic B-field? 
– … 
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The Energy Frontier

• Which path will be followed is anybody’s guess 
• Ultimately it is the physics reach which will determine if a project is viable 

or not 
• The μC is an option for the US to return to the energy frontier 
• It behooves us to carry out a fair comparison in physics reach between CLIC 

and the μC
• The synergies between the various projects are manifold
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LHC Results

CLIC

LHC Upgrade 

√s < 1 TeV

√s > 1 TeV μ-Collider

VLHC

ILC

New Detectors 



5 Step Plan

1 Have a realistic beamline design and machine detector interface
– Determine environmental background 
– Determine machine background 

2 Specify minimum baseline parameter for the collider, such as beam 
polarization for both beams and beam energy spread

3 Determine physics program that can withstand the physics environment 
after ten years of running at the LHC and is competitive with an e+e-

machine

4 Develop detector design concept for μC detector, with reasonable 
technology assumptions, folded with realistic detector geometry  

5 Establish a software platform for the physics studies and study physics 
reach through full Monte Carlo simulations of benchmark processes and 
compare results with physics reach of sLHC and ILC/CLIC
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Resources
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Concluding Observations
• There is nearly full overlap in the development of new detector 

technologies with any new facility at the energy frontier

• One of the main differences between ILC – CLIC – μC is the Machine 
Detector Interface 
– The beam and decay backgrounds will determine critical 

detector parameters 
– Assuming similar detector technologies, the physics reach of a 

realistic detector geometry should be evaluated to enable a fair 
comparison between facilities 

• The μC is the US option to return to the energy frontier. A leading 
role in the scientific foundation of the new energy frontier is well 
advised 



ILC Director’s Corner, June 18
• “… the ILC programme needs to be viewed in the 

context of the broader efforts towards a next-generation 
lepton collider. The other major effort is CLIC … 
There are also R&D efforts towards developing a 
multi-TeV muon collider on yet a longer timescale. 

In one sense these efforts are in competition with each 
other, … but, in a more overriding sense, we are all 
working towards the same goal, to prepare for the 
next energy frontier machine for our field. 

Independent physics studies … have each given the 
highest priority for the future of the field to develop 
a lepton collider complementing the LHC while fully exploiting the 
Terascale. These parallel R&D programmes are all needed to determine the 
technical capabilities, readiness, risks and costs of these options, while the 
LHC discoveries will determine the desired technical requirements. 

http://www.linearcollider.org/cms/?pid=1000644 
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